Information Complexity of Multivariate Fredholm Integral Equations in Sobolev Classes

نویسندگان

  • Karin Frank
  • Stefan Heinrich
  • Sergei V. Pereverzyev
چکیده

In this paper, the complexity of full solution of Fredholm integral equations of the second kind with data from the Sobolev class W r 2 is studied. The exact order of information complexity is derived. The lower bound is proved using a Gelfand number technique. The upper bound is shown by providing a concrete algorithm of optimal order, based on a speciic hyperbolic cross approximation of the kernel function. Numerical experiments are included, comparing the optimal algorithm with the standard Galerkin method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of Local Solution of Multivariate Integral Equations

In this paper the complexity of the local solution of Fredholm integral equations is studied. For certain Sobolev classes of multivariate periodic functions with dominating mixed derivative we prove matching lower and upper bounds. The lower bound is shown using relations to s-numbers. The upper bound is proved in a constructive way providing an implementable algorithm of optimal order based on...

متن کامل

An Optimal Algorithm for the Local Solution of Integral Equations

The local solution problem of multivariate Fredholm integral equations is studied. Recent research proved that for several function classes the complexity of this problem is closely related to the Gelfand numbers of some characterizing operators. The generalization of this approach to the situation of arbitrary Banach spaces is the subject of the present paper. Furthermore, an iterative algorit...

متن کامل

Complexity of Local Solution of Integral Equations

We study the complexity of local solution of Fredholm integral equations. This means that we want to compute not the full solution, but rather a functional (weighted mean, value in a point) of it. For certain Sobolev classes of multivariate periodic functions we prove matching upper and lower bounds and construct an algorithm of the optimal order, based on Fourier coeecients and a hyperbolic cr...

متن کامل

A Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations

In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...

متن کامل

The Minimal Radius of Galerkin Information for the Fredholm Problem of the First Kind

We propose a new scheme of discretization for solving Fredholm integral equations of the first kind and show that for some classes of equations this scheme is order-optimal in the sense of amount of used Galerkin information.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1996